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A B S T R A C T

Olive pitting machines are characterized by the fact that their optimal functioning is based on an appropriate
adjustment: selection of a feed plate adapted to the olive variety and its caliber, geometrical characteristics of the
feed chain, etc. The first of these elements sets the optimal way for olives to enter the feed chain and, therefore, it
prevents empty pockets or more than one olive to be placed in the same pocket. The second element sets the
appropriate position for the olive to be pitted and prevents it to be pitted by a secondary axis.

The proposed study analyzes the appropriate placement of olives in the pockets of the feed chain by using the
following items:

1. A computer vision system with an external trigger, which is capable of taking a picture of every pocket
passing in front of the camera.

2. A classifying neural network that, appropriately trained, differentiates between four possible pocket cases:
empty, normal, incorrectly de-stoned olive in any of its angles (when the olive is de-stoned transversally
instead of longitudinally, also known as “boat”) and anomalous case (two olives in the same pocket, small
parts of it or foreign elements, such as small branches or stones).

A preliminary analysis, carried out with the MATLAB Neural Network Toolbox, has enabled to test the viability
of using a neural network to perform this type of classification.

The main objective of this paper is to illustrate the use of a physical chip with neural networks, NeuroMem
CM1K (General Visions, 2016. CM1K), for sorting purposes.

Therefore, it is necessary to identify the minimum resolution required to classify the images of olives in olive
pitting machines and their adequate position to be pitted considering an input vector of up to 256 bytes, which is
the maximum dimension supported by NeuroMem CM1K.

As described before, a camera with an external trigger will be used for image capturing synchronized with the
feed chain.

Given that the image classification speed must be higher than 15 Hz to be operatively convenient, the in-
dustrial feasibility of this system will be assessed in order to implement it in an olive pitting machine, the
operating speed of which starts at a rate of 900 olives/minute.

The use of the physical chip NeuroMem CM1K, for its greater capacity and scalability, has been proven
satisfactory and, therefore, it offers a great potential for sorting purposes. As stated in the obtained results
contained in following pages, it has been possible to train, for the first time, an artificial neural network (ANN)
implemented in a neuromorphic chip to classify the images of the olives in the feed chain of olive pitting
machines. Consequently, it sets an alternative system in order to study possible cost, space and energy use
reductions in contrast with traditional common computer systems or PLCs.
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1. Introduction

Neural network is a widely used technology in the industry due to
its successful way to classify or improve the production. Some examples
are described below.

Parallel Neural Network Chips are used for fish inspection before
filleting offshore (Menendez and Paillet, 2008). Each network chip
system uses four neural network chips (accounting for 312 neurons)
based on a natively parallel, hard-wired architecture that performs real-
time learning and nonlinear classification (RBF).

Common tasks are related to fill bottles in factories. The process is
quite simple. However, it may be necessary to use an intelligent device
to inspect the process (Menendez and Paillet, 2013).

There are other similar papers related to fruits and vegetables:

– Classification of apples using three layers of 9-6-3 neurons, 96.6%
accuracy (Yang, 1993).

– (Nagata and Qixin, 1998) developed a grading system for fruit and
vegetables using neural network technologies, obtaining a high
percentage of accuracy for strawberries and green peppers (94% to
98% and 89%, respectively).

– Applied machine vision and ANN for modelling and controlling
grape drying process. This paper presents a new method for pre-
dictive modelling of grape drying process for on-line monitoring and
controlling of this process. (Behroozi Khazaei et al., 2013).

– Olive Fruits Recognition Using Neural Networks. Olive fruit re-
cognition is performed by analyzing RGB images taken from olive
trees. (Gatica et al., 2013).

– Identifying Olive (Olea europaea) Cultivars Using Artificial Neural
Networks. Backpropagation neural networks (BPNNs) were used to
distinguish among 10 olive (Olea europaea L.) cultivars, originating
throughout the Mediterranean basin. (Mancuso and Nicese, 1999).

The combination of computer vision and neural networks is a way to
perform tasks that are more complex:

– A neural network chip is used for license plate recognition (Liu
et al., 2011). The chip combines a video image-processing module
with a neural network module by using equalized image processing
algorithms and network classification algorithms.

– Image recognition is simpler than image processing methods for face
recognition, mainly due to the lack of a fixed pattern for comparison
purposes (Sardar et al., 2011). Santu Sardar published a paper based
on automated face recognition, which is a technique employed in a
wide range of practical applications, including personnel access
control or identification systems.

Regarding table olives, there are some techniques to classify them
by using computer vision and neural network according to the papers
below.

The book Computer Vision Technology for Food Quality Evaluation,
2nd Edition, (Sun, 2008) includes a specific chapter based on different
technologies that analyze the quality of food. Chapters 11 to 13 deal
with quality evaluations of apples, citrus fruits and strawberries, re-
spectively.

Of particular interest to the problem, chapter 14 explains the clas-
sification and evaluation of table olives and describes how to classify
them by color, shape or external defects made by insects.

A usual way to classify the olives is by using computer vision (Diaz,
2004). The paper analyzes the images captured by a camera connected
to a PC. The image analyzed 66 olives per matrix. In this paper, the
author used a Bayesian math model for pre-classification to perform
this process. A neural network software was used with 15 sorting
parameters and a hidden layer. The result was successful: the network
was able to classify more than four types of olives. The results could be
improved by using high-resolution images.

Other chipsets have been successfully used in several trials ob-
taining positive results:

Lohi is a chip manufactured by Intel. It integrates programmable
synaptic learning rules. This chip can solve LASSO optimization pro-
blems. (Davies et al., 2018) presented an unambiguous example of
spike-based computation using a range of different neuron models and
some preliminary Lohi results.

Moran et al. (2018) presented a new work demonstrating, for the
first time, spinal image segmentation using a deep learning network. It
was implemented on a neuromorphic chip, an IBM TrueNorth Neuro-
synaptic System. The results compared to human-generated segmenta-
tions of spinal vertebrae and disks.

Moradi et al. (2018) presented a work which established a novel
routing methodology to minimize memory requirements and latency,
maximizing programming flexibility. The authors validated the pro-
posed scheme in a multi-core neuromorphic processor chip prototype,
DYNAP-SE.

Frenkel et al. (2019) presented a digital spiking neuromorphic
processor. This chip obtains a minimum energy per synaptic operation.
They demonstrated an efficient implementation of the spike-driven
synaptic plasticity learning rule for high-density embedded online
learning.

Google's Coral Dev (Fried, 2019) is a single-board computer based
on the Raspberry Pi form factor, designed to run TensorFlow Lite
models. The chip Edge TPU is implemented on this board and it is
capable of up to 4 trillion operations per second (TOPS).

Lobachev et al. (2018) used the physical deployment model em-
ployed in the Intel Movidius VPU modules and Raspberry Pi micro-
controllers to investigate and model the neural network integration.
This network model utilizes a lower power approach and faster re-
sponses as well as it improves overall system efficiency.

Hubbard (2019) selected the Nvidia Jetson platform, specifically the
Nvidia Jetson Nano, to build a neural network for detecting objects. It
requires a very high-speed device with the machine learning runtime.

At the time of writing this paper, the chip selected was the
NeuroMem CM1K. In 2019, the manufacturer Nepes IA in collaboration
with General Vision launched a new powerful chip with 575 Neurons
(NM500).

Kim (2019) proposed a system to control vehicle speed by re-
cognizing the traffic information images marked on road with an Ad-
vanced Driver Assistance System, ADAS. This application used this
newly developed neuromorphic artificial intelligent chip NM500.

The following article (General Visions, 2018 CogniPat SDK for
MATLAB) proves the benefits of this chip under the MATLAB platform
to learn and recognize extracted data vectors, signals and images.

There is another platform on the market to develop research pro-
jects: the NeuroMem USB Dongle (General Visions, 2019 NeuroMem
USB Dongle) uses 4 NM500 chips packaged, accounting for 2304 neu-
rons in total.

2. Materials and methods

2.1. Neural network

A technology based on ANNs has been used due to its noticeable
ability to obtain complicated and imprecise data, such as image ana-
lysis. Therefore, it can be used to deduce patterns and detect correla-
tions which are hard to be seen by humans or other computational
techniques.

The architecture of a neural network is composed of multiple ele-
mentary processors (Goodfellow et al., 2016). It is an adaptive system
with an algorithm which can adjust its weight values in order to meet
the performance requirements of the problem based on representative
samples.

Therefore, it is possible to state that an ANN is a distributed com-
puter system with the following features:
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– It is composed of an input layer, an output layer and one or more
hidden layers, which can account for hundreds or thousands of them
in complex systems.

– Every unit is an independent perceptron, which has an extremely
low processing rate.

– The units within the input layer allow the access to hidden layers
and these do the same to access output layers in turn.

– Each node connecting different neurons has a weight value, w.

The backpropagation process, used for perceptron training pur-
poses, consists on the following:

– A training sample propagates forwards, through the network.
– Input error calculation is performed, usually squared error. Both
desired and output values are considered to obtain the aforemen-
tioned calculation.

– This error calculation is reduced using the stochastic gradient des-
cent method (SGD).

The error optimal value is defined as the value obtained as a global
minimum. The goal is to obtain it during the training stage. However,
local minimum values can be obtained instead.

Backpropagation is the most efficient way to set this value (Hecht-
Nielsen, 1992). First, errors are calculated in output units considering
the difference between the desired and predetermined values. After
that, they propagate through the network using the weights and hit the
minimum in the most optimal way.

Such working structure is repeated in every network. Considering
deep learning networks, the concept of hidden layer must be raised
because this type of layer is based on the universal approximation
theorem and, therefore, a neural network with a single hidden layer
containing a finite number of neurons may be trained to approximate
an arbitrary random function.

It is important to state that the most important feature of artificial
neural networks lies in their learning capacity from a training pattern
combination, meaning that they are able to find a model which fits the
obtained data.

Fig. 1 shows the diagram of the physical neural network used by the

CM1K chip.
Software emulation of a neural network is computationally de-

manding, which implies that operations will take a long time to be
carried out. The use of a chip that physically implements a neural
network (that is the case of this paper with CM1K chip) will speed up
the training and response processes of the neural network.

2.2. The NeuroMem chip CM1K

The NeuroMem neural network shown in Fig. 1 is a pattern re-
cognition accelerator chip which is also trainable in real-time by
learning examples, (General Visions, TM_TestNeurons_SimpleScript). A
NeuroMem chip is a fully parallel silicon neural network: it is a chain of
identical elements (i.e. neurons) which can store and process informa-
tion simultaneously. They are addressed in parallel and have their own
“genetic” material to learn and recall patterns without running a single
line of code and without reporting to any supervising unit.

Input data coming from a variety of sources can be converted
into a pattern vector which can then be sent to the neurons for
either learning or recognition, (General Visions, 2019
TM_NeuroMem_Technology_Reference_Guide). In the first case
(learning), the neurons decide autonomously if the input pattern and its
associated category (1) represent novelty and should be stored in the
next available neuron, and (2) bring conflict to committed neurons
which should be corrected. In the second case (recognition), the neu-
rons decide autonomously which one has the closest match and queue
their responses per decreasing level of confidence.

The CM1K (General Visions, 2017 TM_CM1K_Hardware_Manual) is
composed of the following modules: a Neuron Interconnect module, a
chain of neurons, daisy-chained and interconnected, a recognition stage
(optional usage) and finally, a I2C slave (optional usage).

The CM1K has two possible classifiers: K-Nearest Neighbor (KNN) or
Radial Basis Function (RBF), and more precisely, a Restricted Coulomb
Energy (RCE) neural network (Halgamuge et al., 1994). We used the
second one in this work.

In a CM1K (General Visions, DS_CM1K), a neuron is a memory with
some associated logic to compare an incoming pattern with the re-
ference pattern stored in its memory and react (i.e. fire) according to its

Fig. 1. Diagram of the CM1K chip neural network.
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similarity range. A neuron also has a couple of attribute registers such
as a context and category value. Once a pattern is broadcasted, the
neurons communicate briefly with one another (for 16 clock cycles) to
determine which one holds the closest match in its memory. The
“Winner-Takes-All” neuron de-activates itself when its category is read,
thus leaving the lead to the next “Winner-takes-All”, if applicable, and
so on. A single CM1K matching a pattern of 256 bytes against 1024
models delivers the equivalent of 192 GiGaOps per second.

2.3. MATLAB neural network toolbox

We are using the MATLAB Neural Network Toolbox (The
MathWorks Inc., Neural-network 1994–2017) in order to train a deep
neural network and classify images taken by a camera.

Once trained, the network will be able to differentiate the most
common errors in the olive-pitting process, including “boat” de-stoning
and empty pockets. This preliminary stage allows us to classify binar-
ized images properly in order to test the most common error cases in
physical chip.

A neural network with multiple hidden layers may be useful to solve
sorting problems dealing with complex data, such as images. There are
plenty of developed applications, e.g., the classification of wine cellars
according to certain patterns (The MathWorks Inc., wine-classification-
with-neural-pattern-recognition 1994–2017). Every layer can learn
different characteristics in different levels of abstraction. However,
training the neural network with multiple hidden layers may be chal-
lenging.

An effective way to train a neural network with multiple layers is to
train one layer at once (The MathWorks Inc., train autoencoder
1994–2017), which can be achieved by using a specific network called
‘autoencoder’ in every selected hidden layer. This feature is enabled in
the used (MATLAB, 2017a) and later versions. An autoencoder is a
neural network in which the inputs are trained to emulate the outputs
(Moller, 1993). Autoencoders use unsupervised learning (Haykin,
1999) which employs an algorithm that collects data in an unlabeled
data set according to some hidden features of the data. Autoencoders
are usually symmetrical, taking the middle layer as reference, and
consist of two parts. The encoder comprises both the input and the
middle layer whilst the decoder consists of the middle and the output
layer. The autoencoder is divided into two neural networks that work as
an encoder-decoder algorithm.

The neural network, the input of which is the encoder input and the
output is the middle layer of the autoencoder, compresses the data. On
the other hand, the neural network, the input of which is the middle
layer and the output is the output layer of the autoencoder, decom-
presses them. The encoder also extracts a set of features.

The autoencoder is often used for data dimensionality reduction,
features extraction or reinforcement learning.

The mathematical model to determine autoencoder (Pierre, 2012):
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For any A ∈ Ą and B ∈ Ɓ, the autoencoder transforms an input
vector x ∈ Fn into an output vector A o B(x) ∈ Fn.

– F is set.
– m is a positive integer.
– is a set of m (training) vectors in Fn.
– is a distorsion function.

(The MathWorks Inc., Train Stacked Autoencoder for Image
Classification 1994–2019) provides a clarifying example about this type
of neural structure for image classification using an autoencoder neural
network. In this example, handwritten number images of up to 28 pixels
are included to be identified and classified by the MATLAB Neural
Network Toolbox, using up to 5000 images for training purposes.

In our case, a two-autoencoder stacked neural network has been
used to extract different image features and also a Softmax layer
(Demuth et al., 2014) to determine different classes.

As shown in Fig. 2a diagram, the first trained autoencoder (Auto-
encoder 1) uses a hidden layer of 100 neurons that comprises a max-
imum input of 256 dimensions (16 × 16 pixels) into 100-dimensional
feature vectors.

As shown in Fig. 2b, the second autoencoder (Autoencoder 2) is
used to simplify and optimize the neural network comprising again the
data, from 100 dimensions (which is the number of the dimensional
feature vectors in Autoencoder 1) to an output of 50-dimensional fea-
ture vectors.

The Softmax layer, in Fig. 2c, takes those 50-dimensional feature
vectors from Autoencoder 2 and assigns a class to every possible vector.
In our case, there are three possible classes: empty pocket, “boat” olive
and normal. Anomalous cases (two olives in the same pocket, broken
olives, etc.) have not been included.

Finally, it is possible to go further and adjust it through a back-
propagation process throughout the stacked multilayer network (deep
network), including the encoder 1 of the Autoencoder 1, the encoder 2
of the Autoencoder 2 and the Softmax layer, as shown in Fig. 2d. This
process readjusts the entire network and retrains it using the training
data under supervision.

Once built and trained successfully, this type of neural network for
deep learning (as mentioned before, there are two layers in our case)
will allow us to analyze the effect of image resolution on the sorting
capacity of the network.

2.3.1. Preliminary tests: minimum resolution
Several tests to identify the minimum resolution accepted by phy-

sical chip are carried out with the purpose of setting the lowest pro-
cessing rate. To do so, real images are to be processed in MATLAB and it
should be estimated if the system is able to identify them.

A test comprising 10,000 images and random sequences of 300

Fig. 2a. Autoencoder 1 diagram.
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images, in which the orientation of the olive has been calculated, has
been set in order to validate the preliminary tests. Once tested in a
given resolution, it is checked with the same images but at a lower
resolution, reducing a pixel in every direction. Verifications conclude
(as exposed in the section about results) that the minimum resolution
accepted is 11 × 11. Below this resolution, the system is not able to
identify the image.

Therefore, we will focus on the 16 × 16 pixels that should allow us
to know the different options we will have when using this physical
chip which are available in the market today: CM1K (General Visions,
2016 CM1K Chip) and 2 × NM500 (General Visions, 2019 NM500
chip).

2.3.2. Preliminary tests: Classification
First, it is necessary to set with parameters what an olive in an in-

correct position is in order to establish if the olive is, indeed, in an
incorrect position. As stated before, the olive is in an incorrect position
for pitting when it is not perpendicular to the punch needle of its major
axis. Fig. 3 shows the correct position of an olive, 90° from vertical.

If an olive is not in the correct position, it may be incorrectly de-
stoned because the punch needle enters the olive in the same direction
of the minor axis (Fig. 4). If an olive is in an incorrect position, its stone
may crush, remain inside or spoil the fruit. Moreover, it may damage
the machine since the punch needle or even the pocked bedding may
break.

“Boat” position is established when the olive is between −45° and
45°. However, it is set based on an empirical approach for classification
that may vary according to the needs of a specific factory, in which a
wider or closer classification may be preferred or even the “boat” po-
sition may be extended from [−80°, −90°] to [80°, 90°].

The neural network needs very few images (20 images) to identify
empty pockets due to the uniformity of images. On the other hand, the
overexposure of empty pocket images leads to an excessively trained
neural network, which begins to identify small details in order to dis-
tinguish between empty images and it produces a sub-classification,
resulting in identification errors.

2.4. Hardware used in image capturing

The camera was selected considering that it must provide an ex-
ternal trigger, since image capturing must synchronize with the pocket
and the illumination trigger. Another important point is that the camera
itself provides the ROI or the image scale for future uses in real time. In
this case, ROI and scale are handled using MATLAB software.

Several cameras have been tested and a choice for the computer

Fig. 2b. Autoencoder 2 diagram.

Fig. 2c. Softmax layer diagram.

Fig. 2d. Stacked neural network diagram.

Fig. 3. Both the punch needle and the olive are perpendicular to the X axis.
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vision system is an UI-1220SE-C USB industrial camera (IDS Imaging
Development Systems GmbH, 2016). The camera trigger is activated in
synchronization with the movement of the olive pitting, slicing and
stuffing machine with a magnetic sensor (Fig. 5).

The detecting distance of the magnetic sensor is 8 mm, as seen in

Fig. 7. Therefore, it must be a flush sensor, allowing the pockets to
move without hitting the sensor.

The magnetic sensor (see Fig. 5) activates the illumination trigger (a
set of four 900-lumen of warm white light output power LED diodes,
3000 K) when it detects the passage of each pocket of the feed chain.

The generated light has pulses of about 2 ms and the minimum
interval of time that takes an olive to pass in front of it is 60/
2500 = 24 ms (when the machine is at its maximum operating speed of
2500 olives/minute). Consequently, LEDs are lit a total of 2/
24*100 = 8.34% of the time frame, which prevents the device from
warming, and the image is taken using an appropriate visibility and an
exposure time of the camera of 1 ms.

The images are stored in the hard disk of a PC for later analysis.
These images are snipped to specifically show the region of interest
(ROI) and create 11 × 11 or 16 × 16 pixel images. Fig. 6 shows a
diagram explaining how the system operates. Every part is represented
by modules (industrial PC, camera, magnetic sensor and triggering
electronics and LED lighting). There is a detailed part of the same
diagram in Fig. 7 to state that the maximum distance between the
sensor and the feed chain cannot exceed 8 mm.

The electronic circuit controls the pulse to turn on and turn off the
LEDs and coordinate with the magnetic sensor and the trigger of the
camera. There is an electronic circuit to clean the vision area in case of
bad visibility. See Fig. 8.

Fig. 9 shows the implemented system over an olive pitting, slicing
and stuffing machine (for small calibers, ‘Manzanilla’ and ‘Hojiblanca’
olive varieties) in a table olive factory in Seville.

Fig. 4. Punch needles in an olive pitting machine (https://www.youtube.com/watch?v=c4-z3Jo6fOg).

Fig. 5. Magnetic sensor used to detect the passage of the pockets in the chain.

Fig. 6. Graphic of the implemented system.

Fig. 7. Maximum distance between the sensor and the pocket.
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2.5. Neural chip used

The neuromorphic chip CogniMem CM1K used in this work has
1024 neurons and an input vector of 256 bytes has been used in a
BrainCard (General Vision, 2017 Braincard). A BrainCard is a trainable

Fig. 8. Electronic circuit of the external trigger.

Fig. 9. System implemented in an olive pitting machine.

Fig. 10. Olive imagery samples, 16 × 16 ROI-scaled.

Fig. 11. Matrix of the obtained results using MATLAB (16 × 16 pixels re-
solution).
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pattern recognition board for IoT and smart appliances. This chip use
(see Section 2.2), RBF or k-NN techniques for sorting purposes. 256-
pixel images (16 × 16) will be processed with the CM1K chip.

3. Results and discussion

3.1. Results obtained using MATLAB neural network toolbox

The first one uses 1-byte depth greyscale images, 16 × 16 pixels
ROI-scaled. For training purposes, a set of 9 images of empty pockets,
11 of “boat” de-stoned olives and 10 of normal olives has been used.
Anomalous case images were not included since the purpose of the test
was to prove the feasibility of the classification of these low-resolution
images using a neural network. Fig. 10 shows olive images 16 × 16
pixels ROI-scaled.

The structure of the autoencoder of the neural network has been
trained with 45 iterations, fixed by the MATLAB neural network library.
The results obtained appear in Fig. 11.

As shown in Fig. 11, the neural network has carried out an appro-
priate classification (< 4% error rate) with 16 × 16 pixels images,
which is the maximum resolution supported by the CM1K chip.

3.2. Results obtained using neuromorphic chip

For neuromorphic chip tests, a set of 20 images of empty pockets, 20
of “boat” de-stoned olives and 20 of normal olives has been used to
train the neural network. Once trained, and for testing purposes, a set of
10,000 images taken during a test in an olive pitting, slicing and
stuffing machine with ‘Hojiblanca’ olive variety in a working factory
has been used. From this set, 1000 images were randomly chosen to
perform sorting tasks. This test has been repeated 100 times.

Table 1 Average results of 100 repetitions and standard deviation
using the NeuroMem CM1K.

As shown in Table 1, the neural network detects between 97.6% and
94.76% of cases correctly [2.40%, 5.24%] error rate. There is a per-
centage of anomalous cases out from the common errors mentioned
classification. These cases may include two olives in the same pocket,
broken olives or olives with a pitch close to “boat” position. The per-
centage of anomalous cases reaches [9.06%, 8.61%].

Four neurons have been used as follows: one neuron for an olive in a
correct position, one neuron for an empty pocket and two neurons for
“boat” cases because the NeuroMem CM1K detects enough variation so
as to need two neurons for classification purposes. The system cannot
identify untrained cases (such as broken olives, two olives in the same
pocket, etc.) and returns value 255, meaning that the case is un-
classifiable (see Section 2.2).

4. Conclusions

Training and testing of a neural network based on a physical chip to
classify olives in the feed chain of a pitting machine have been suc-
cessfully completed. The use of the physical chip NeuroMem CM1K, for
its greater capacity and scalability, has been proven satisfactory and,
therefore, it offers a great potential for sorting purposes. The CM1K
chip detected between 97.6% and 94.76% of cases correctly. Only four
neurons have been used for classification purposes: one neuron for

empty pockets, one neuron for olives in a correct position and two
neurons for “boat” position.

As a preliminary test, a MATLAB neural network has been designed
to be trained in order to classify images with different resolutions with
the aim of setting the lower resolution needed to classify olives in the
feed chain of olive pitting machines. The resolutions of the images have
been adapted to the capacities of the CM1K physical chip. The
NeuroMem CM1K chip is able to process images and classify them ap-
propriately with 11 × 11 pixels resolution and up to 16 × 16 pixels.

Processing times are high for usual pitting machines. The system
reaches to 300 olives per minute, which is far below the 800–2500
olives per minute processed by industrial pitting machines. The reason
is that the communication RS232C at 115200-baud rate generates a
bottleneck between the CM1K and the PC. This problem will be studied
and analyzed in following papers in order to improve time and adapt
the system to industrial environments.

The use of a standard camera with an external trigger (UI-1220SE-C
USB in this case) is proposed as the appropriate method to capture the
images in greyscale (1-byte color depth), with ROI and scale compatible
with physical neural chip. In order to capture the images properly, it is
necessary to synchronize the trigger of the camera with pulsating illu-
mination.

Besides what has been aforementioned stated, some conclusions
obtained during the research process must be raised:

A thorough validation process of training patterns is needed and the
better-selected training patterns are, the closer the neural network will
be to classify images successfully. If this process is not performed, the
error rate may rise up to 30%.

The simplest classification process is the most effective and, there-
fore, the lower the number of cases is, the better the neural network
works because it gets confused with minor differences among cases. The
more different the case is in comparison to others, the better the neural
work performs. An error rate between 1.16% and −0.21% has been
obtained, which proves the right functioning of the neural network to
identify “boat” and anomalous cases.

The empty pocket case has nearly 100% reliability rate because
differences within the same case are minor and, consequently, the
network identifies the pattern with slight differences with tested cases
during training. It allows the neural network to identify them easily.
Although the other cases use similar olives for testing purposes, there
will be always a variation caused by the diversity of the fruit, its po-
sition in the pocket and even the moment of image capturing when the
olive moves through the feed chain, which explains that anomalous
angles [30-70°] get under 5%. This is partly the reason why 100% ef-
fectiveness is not obtained.

Overtraining has been analyzed for empty pocket samples and re-
sults show that the system uses an extra neuron for training samples
over 1000 patterns using quality training patterns and uniform re-
ference for verification tests.
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Table 1
Shows the average results of the 100 repetitions and standard deviation.

Parameters Total “Boat” Standard Deviation Empty Standard Deviation Normal Standard Deviation

Samples 1000 69.94 1.36 88.11 1.49 841.95 1.38
Correct 887.24 62.92 1.53 87.16 1.42 737.16 1.48
Errors 24.94 0.33 0.47 0.42 0.50 24.19 1.34
Anomalous cases 88.36 7.06 0.72 0.44 0.50 80.86 1.42
Error rate (%) [5.24, 2.40] [1.16, −0.21] 0.007 [1.05, −0,10] 0.006 [3.04, 2.71] 0.002
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